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Abstract
Whilst the realization of graphene, probably one of the best two-dimensional carrier systems to
study, has attracted much research interest recently, graphite, which may be regarded as
multi-layered graphene, has also been known to exhibit very interesting phenomena at high
magnetic fields and low temperatures. The electron–hole system in the compensated semimetal
graphite undergoes a magnetic-field-induced electronic phase transition and successive
transitions, including a reentrant transition back to the normal phase, at higher magnetic fields.
In this article, we review the physics of the high-magnetic-field phase of graphite and elaborate
on our studies on this subject using pulsed high magnetic fields.

1. Introduction

Graphite is a semimetal with a layered structure. Each
single layer, well known as graphene, comprises of a planar
hexagonal network of carbon atoms bonded by three of the four
valence electrons in sp2 hybrid orbitals, with the remaining
electron in the pz orbital forming a π -type molecular orbital.
Graphene is intrinsically a zero-gap semiconductor since the
Fermi level crosses at the K (K′) point (or the Dirac point),
where the conduction band (anti-bonding π band) and the
valence band (bonding π band) are tangent. By contrast,
graphite is a semimetal due to the bonding and anti-bonding
π bands overlapping, giving rise to electrons near the K (K′)
point and holes near the H (H′) point; the electron and hole
carrier densities being very small (n = p ≈ 3 × 1018 cm−3)
compared to those of typical metals [1].

The electron- and hole-Fermi surfaces are located along
the vertical H–K–H (H′–K′–H′) edge in the hexagonal
Brillouin zone. Since the two Brillouin zone edges, labelled
H–K–H and H′–K′–H′, are non-equivalent, these π bands
are degenerate in energy. The Fermi surfaces are much
elongated, which makes the in-plane effective masses very
light (∼0.05 me) and, in contrast, the inter-plane masses rather
large (∼10 me). The small in-plane masses and low carrier
density conspire to allow the carrier system to be in its quantum
limit at moderate magnetic fields parallel to the c-axis or
normal to the basal plane. The large inter-plane masses lead
to an enhancement of the density of states at the Fermi level.
These circumstances contrive to ensure that the carrier system

may be greatly affected by the application of even moderate
magnetic field.

The first experimental indication of such a phenomenon
was obtained as the observation of an abrupt increase in the
low-temperature magnetoresistance caused by the application
of a magnetic field parallel to the c-axis [2]. Since then, a
number of experimental studies using either steady or pulsed
magnetic fields have been made to elucidate the nature of the
magnetic-field-induced phase with the resistance anomaly as
its onset. The sharpness of the resistance increase and the
strong dependence of its onset field on temperature strongly
suggest that it be interpreted as an electronic phase transition
involving many-body effects [3]. Whereas the real nature of
this phenomenon still remains unknown, the magnetic-field-
induced phase has been theoretically discussed in terms of the
formation of a density wave caused by 2kF-type nesting [4].
Such a theoretical study naturally led to the idea that there will
be successive transitions of a similar nature and/or a reentrant
transition back to the normal state at higher fields. In fact, our
pulsed-magnetic-field study conducted later obtained definitive
evidence of a reentrant transition [5]. We shall refer to the
magnetic-field-induced phase as the (field-induced) density-
wave state for convenience.

2. High-magnetic-field phase of graphite

2.1. Field-induced electronic phase transition and reentrant
transition

As briefly described above, the electron–hole system in
graphite undergoes a magnetic-field-induced electronic phase
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Figure 1. Transverse magnetoresistance ρxx at different temperatures
between 1.1 and 10 K. The onset transition (α) and the reentrant
transition (α′) are indicated with arrows. Shubnikov–de Haas
oscillations are seen around 3 and 7 T at low temperatures.

transition accompanied by a resistance increase as the
onset [3]. In most experimental studies on this subject done
thus far, Kish graphite [6, 7] has been chosen. Indeed,
all of the graphite samples used in the studies described in
this article were flakes of Kish graphite. Kish graphite,
which is artificially grown by precipitation from carbon-
saturated molten iron or nickel [6, 7], has been found to
exhibit the onset of the field-induced density-wave state in
a consistent manner. In contrast, samples such as highly
orientated pyrolytic graphite (HOPG), which is polycrystalline
graphite with ordered c-axis orientation, are seen to exhibit
somewhat poor features associated with the field-induced
phase transition, and do not appear to behave very reproducibly
from sample to sample [3]. Such a difference between Kish
graphite and HOPG is perhaps due to the dimensionality.
In fact, this idea is supported by recent magnetoresistance
measurements [8] and scanning tunnelling spectroscopy (STS)
experiments in magnetic fields [9]. The magnetoresistance
experiments signal the occurrence of the (integer) quantum
Hall effect, which is inherent in the two-dimensional system,
in HOPG samples (but not in Kish graphite samples) [8]. The
STS measurements in magnetic fields parallel to the c-axis [9]
indicated that Kish graphite is identified as bulk graphite whilst
HOPG may be regarded as graphite with a finite thickness
of about 40 layers. Both of these studies strongly suggest
that HOPG is considerably more two-dimensional than Kish
graphite.

Our pulsed-magnetic-field study revealed that the onset
transition to the field-induced density-wave state is, at a higher
field, followed by a reentrant transition back to the normal
state [5]. Figure 1 shows the transverse magnetoresistance ρxx

in pulsed magnetic fields of ∼55 T at various temperatures.
For all the temperatures except 10 K, a sharp resistance
increase is clearly seen (labelled α, after [10]), which is

Figure 2. Phase diagram of graphite in the H–T plane. The solid
circles represent data points of the onset (α) field, and the open
circles represent the reentrant (α′) transition. The solid curve through
the data points is a guide to the eye and provides an approximation to
the phase boundary.

the feature attributed to the electronic phase transition to the
field-induced density-wave state mentioned above [2, 3]. The
resistance then exhibits complicated behaviour, particularly at
low temperatures and drops dramatically at fields higher than
∼45 T. Eventually, the resistance shows a sharp bend around
50 T (labelled α′ in figure 1) and approaches an extrapolation
of the resistance from below the onset field. This is a very
strong indication of a reentrant transition to the normal phase.
The width between the α and α′ fields becomes narrower
with increasing temperature and no discernible structures
attributable to the transitions can be seen at or above 10 K. The
attribution of α′ to a reentrant transition leads to the proposed
phase diagram for graphite shown in figure 2. A smooth solid
curve is employed through the data points as a guide to the
eye and represents an approximation of the phase boundary
between the ordered state and the normal state.

In order to understand the phase diagram in the H –T
plane (magnetic-field–temperature plane), let us first focus on
the temperature dependence of the onset field. The onset
field at liquid helium temperatures is typically 20–30 T; this
field range was intensively investigated using steady magnetic
field to determine accurately the phase boundary in the H –T
plane [3, 11] in the early stage of the research. At least in this
field range, the relationship between the critical temperature
and the applied field was found to be empirically expressed by
the formula

Tc(B) = T ∗ exp

(
− B∗

B

)
, (1)

where T ∗ and B∗ are adjustable parameters. This empirical
formula was inspired by the Bardeen–Cooper–Schrieffer
(BCS)-type formula for a mean-field-type pairing transition

kBTc(B) = 1.14EF exp

(
− 1

N(EF)V

)
, (2)

where N(EF) is the density of states at the Fermi level and
V is the relevant pairing interaction. The values of T ∗
obtained in existing experimental studies are of the order
of the Fermi energy of graphite (∼20 meV) in accordance
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Figure 3. Landau levels of graphite in a magnetic field of 30 T
parallel to the c-axis. The nesting vector for the charge density wave
in the n = 0, spin-up subband is shown as an example.

with equation (2) [3, 10–12]. (In reality, the Fermi energy
depends on magnetic field. Its field dependence does play
a very important role in the occurrence of the reentrant
transition at higher fields. For this field range, nevertheless,
the magnetic field dependence of the Fermi energy is modest,
and consequently T ∗ in equation (1) may be approximated
to be constant.) The applied field B in the exponent in
equation (1) reflects that the density of states at the Fermi level
is proportional to the field B owing to the Landau degeneracy
factor. In support of the validity of the empirical formula, the
pressure effect on the transition temperature was found to be
explained by equation (1) taking into account the changes in
the density of states and the bandwidth (Fermi energy) by the
application of pressure [13].

Meanwhile, Yoshioka and Fukuyama (YF) [4] proposed
a model (see also [11]) which ascribes the resistance increase
to a charge-density-wave (CDW) instability due to the quasi-
one-dimensionality of the energy spectrum caused by Landau
quantization. In high magnetic fields in excess of 7.4 T, the
carrier system in graphite is in its quasi-quantum limit, where
only the lowest electron (n = 0) and hole (n = −1) Landau
subbands (each of them spin-split) are populated. In the field
range of interest (magnetic field B > 20 T), all the other
subbands of higher index are far away from the Fermi level;
under such conditions, several nestings across two Fermi points
are possible at low enough temperatures [4, 11]. (Figure 3
illustrates the Landau subband dispersion at B = 30 T, which
is a typical magnetic field strength for the phenomenon to be
discussed [3].)

YF calculated the transition temperatures of possible
2kF-type instabilities (e.g. charge- or spin-density-wave
instabilities) and concluded that of the CDW associated with
the n = 0 spin-up subband is the highest [4], giving the
transition temperature as

kBTc(B) = 4.53EF
cos2( 1

2 c0kF0↑)
cos(c0kF0↑)

exp

(
− 2

N0↑(EF)u(ε)

)
,

(3)

where EF is the Fermi energy (i.e. the occupied energy width
of the relevant Landau subband), kF0↑ is the Fermi wavevector
of the n = 0 spin-up subband, c0 is the lattice constant along
the c-axis, N0↑(EF) is the density of states of the n = 0
spin-up subband at the Fermi level (chemical potential). u is
the relevant pairing interaction as a function of the dielectric
constant ε. EF, kF0↑, N0↑(EF) and u all depend on magnetic
field B . The dielectric constant ε is treated as the only
adjustable parameter in equation (3) [11].

In this scenario, YF suggest that two sets of CDWs that
are out of phase with each other can be stabilized without
the Hartree energy loss (the direct Coulomb interaction) [4]
owing to the existence of the doubly degenerate subbands
located along the H–K–H and H′–K′–H′ edges3. In view of
this, therefore, such a density wave perhaps should be called
a valley density wave (VDW) rather than simply a CDW. YF
also point out that the electron–phonon interaction is several
orders of magnitude smaller than the relevant interaction [4];
the CDW is driven by the (exchange) Coulomb interaction. In
addition, this type of CDW is spin-polarized, so that increasing
the applied field is not liable to suppress the nesting via the
Zeeman (Pauli) effect, unlike a CDW pre-existing in zero
magnetic field, which occurs in both spin-up and spin-down
subbands simultaneously [14].

Although equation (3) is derived for a particular 2kF-type
instability, its functional form is, as discussed in [11], identical
to those for the other possible 2kF-type instabilities and is very
similar to that of the general BCS-type formula equation (2).
In order for the higher-field region to be understood, the field
dependence of the Fermi energy is indeed important. Whereas
the exponent in equation (3) (or equation (2)) increases with
increasing magnetic field, the pre-exponential decreases owing
to the field dependence of the Fermi energy. The Fermi energy
associated with the n = 0 spin-up Landau subband decreases
with magnetic field, and is expected to reach zero at a field
higher than 60 T according to band calculations based on the
Slonczewski–Weiss–McClure (SWM) model [15, 16]. This
corresponds to the n = 0 spin-up Landau subband crossing the
Fermi level, so that no carriers remain in the subband above
the crossing field Bcross. The transition temperature Tc(B)

therefore tends to zero as the Fermi energy approaches zero
because Tc is proportional to the Fermi energy in equation (3)
(or equation (2)). In other words, the reentrant transition field
should extrapolate to Bcross at zero temperature. Therefore, at
least in a qualitative fashion, the mechanism for the reentrant
transition may be understood along this line of discussion.

Since band calculations based on the SWM model indicate
that the n = 0 spin-up Landau subband crosses the Fermi level
at a field higher than 60 T, the combination of the YF theory
(or equation (3)) and the SWM model leads to the idea that the
reentrant transition will occur above 60 T at zero temperature,
showing a discrepancy between theory and experiment [5].
Takada and Goto [17] calculated the renormalized band
structure on the basis of the SWM model by taking into account

3 Takahashi and Takada’s study on the single-electron wavefunctions revealed
that electrons in the H–K–H edge and those in the H′–K′–H′ edge reside mostly
in adjacent layers in real space, so that the Hartree term is not completely
cancelled [19].
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Figure 4. Electronic structure of graphite at fields of 50 and 55 T. In (a), no many-body effect is considered, whilst in (b), the self-energy
correction is included self-consistently (reprinted from [17] by Takada and Goto with permission). (a) SW energy dispersion. (b) With
self-energy correction.

self-energy corrections, and revealed the importance of such
corrections in the vicinity of the crossing field. They found that
the n = 0 spin-up and n = −1 spin-down Landau subbands
cross the Fermi level, upwards and downwards respectively,
almost simultaneously at ∼53 T. By contrast, those Landau
subbands are occupied at the same field in the conventional
band calculations based on the SWM model (figure 4). This
implies that Tc should go to zero at the same field, in excellent
agreement with the experimental observations [5] (see figure 2;
the reentrant transition extrapolates to B ≈ 52.3 T at zero
temperature). Takada and Goto’s calculations [17] also suggest
that the bandwidth collapses rapidly to zero as the crossing
field is approached. Since the transition temperature given by
equation (3) is proportional to the Fermi energy, this explains
the very steeply falling high-field side of the phase boundary
in figure 2.

The agreement between the predictions of Takada and
Goto [17] and the experiment [5] provides strong support
for the reentrant transition being a consequence of a Landau
subband crossing the Fermi level. The transition may be
associated with the n = 0 spin-up and/or n = −1 spin-down
subband, as both cross the Fermi level almost simultaneously at
about 53 T in Takada and Goto’s calculations [17]; therefore,
the exact nature of the electronic state between the α and α′
boundaries remains somewhat uncertain. In this context, it
should be noted that other theoretical work made subsequent
to the YF theory reached different conclusions as to which
of the possible nesting instabilities has the highest critical
temperature (e.g. a CDW in the n = −1 subband [18]; a spin
density wave (SDW) in the n = 0 subband [19]).

2.2. Properties of the field-induced density-wave phase

2.2.1. Possible successive phase transition. As can be seen
in figure 1, the in-plane (transverse) magnetoresistance ρxx

shows rather complicated behaviour above the α transition at
low temperatures (below ∼3 K). This is particularly evident
in the 1.1 K trace in figure 1; the resistance increases twice
between the α and α′ transitions (see inset to figure 5). Figure 5
demonstrates that this behaviour becomes much more evident
in the out-of-plane (longitudinal) magnetoresistance ρzz in a
close temperature range (below ∼3 K). These features in ρxx

and ρzz probably correspond to each other, which is labelled
β after [10]. (The 1.1 K trace in the inset to figure 5 is taken
from figure 1.) This resistance increase labelled β also might
signal another 2kF-type transition. It is noteworthy that with
decreasing temperature the feature associated with β becomes
more pronounced and the feature associated with α becomes
attenuated. This might be a consequence of the two phases
preceded by α and by β competing with each other.

In [20], the out-of-plane (longitudinal) magnetoresistance
ρzz was investigated in magnetic fields of up to ∼37 T and a
steep resistance increase in ρzz was found at low temperatures.
Besides this, it was found that the steep resistance increase
is accompanied by non-ohmic transport, which may be
interpreted as the sliding of a depinned density wave along
the c-axis. In contrast, Iye and Dresselhaus [21] found non-
ohmic transport in the in-plane (transverse) magnetoresistance
ρxx in the phase immediately after the α transition, which
leads to the α transition being interpreted as a density-wave
transition perpendicular to the c-axis rather than parallel to
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Figure 5. Longitudinal magnetoresistance ρzz at various
temperatures. The onset transition (α) and the reentrant transition
(α′) at 6.5 K are indicated with arrows. The inset shows the
transverse magnetoresistance ρxx at 1.1 K for comparison; the α, β
and α′ transitions are indicated with arrows.

the c-axis. As the directions in which the two kinds of non-
ohmic transport [20, 21] are very different, these observations
also suggest the occurrence of two distinct phases. In view
of the directions of the density waves, the β transition fits
YF’s theoretical model of a 2kF-type instability along the c-
axis better than the α transition does.

Also, if any of the Landau subbands remain unnested in
the phase whose onset is the β transition, the steep increase
in the out-of-plane magnetoresistance ρzz associated with the
β transition would be significantly reduced. In order for
all the Landau subbands to be nested simultaneously, the
only possible nesting vector common to all the occupied
Landau subbands is that for the SDW, i.e. connecting two
Fermi points via kz = 0 for the electron subband and via
kz = π/c0 in the extended zone representation for the hole
subbands (figure 6), or vice versa. The charge neutrality in
a compensated semimetal ensures that the nesting vectors for
the electron and hole bands are translationally equivalent in
the extended zone representation. (A slightly more detailed
explanation about the translational equivalence of the two
subbands will be given in section 2.2.2.)

2.2.2. Hole doping by neutron irradiation. As graphite is
a compensated semimetal, the concentrations of electrons and
of holes are ideally the same. In other words, the charge
neutrality condition determines the Fermi level and the Fermi
wavevectors kF in the occupied Landau subbands. Therefore,
carrier doping will certainly affect the density-wave state. Fast-
neutron irradiation creates lattice defects, some of which act
as acceptors [22]. In order to gain insight into which Landau
subband and which instability are relevant for the magnetic-
field-induced density-wave state, we have used samples that
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Figure 6. Landau levels of graphite in a magnetic field of 30 T
parallel to the c-axis in the extended zone representation. The nesting
vector for the SDW common to the n = 0 (red) and n = −1 (blue)
subbands is shown.

(This figure is in colour only in the electronic version)

were irradiated with fast neutrons of a flux (E > 1 MeV) of
5.5 × 1012 cm−2 s−1 at 50 ◦C for 1, 2 and 4 h in JAERI JRR-4.
(The imbalances of the electron and hole densities p − n are
estimated to be 0.7, 1, 2×1018 cm−3 from Hall measurements,
respectively.)

Figure 7 shows the transverse magnetoresistance ρxx of
neutron-irradiated graphite in pulsed magnetic fields of ∼53 T
at different temperatures; at all the temperatures, both the
onset transition α and the reentrant transition α′ are observed.
Figure 8 displays the phase diagram of neutron-irradiated
graphite in the H –T plane. With increasing neutron dosage,
the onset transition α shifts towards higher fields whilst the
reentrant transition α′ shifts towards lower fields. The increase
of the onset field (α) with dosage (or hole doping) has been
explained as a manifestation of the pair-breaking effect on a
pairing transition such as a density-wave transition due to the
increased scattering [22]. (The increased scattering causing the
pair-breaking effect was not intentional, but was a sort of side
effect of hole doping by neutron irradiation.)

As described previously in section 2.1, the reentrant
transition may be understood as a consequence of Fermi
level crossing (or depopulation) of the Landau subband(s)
responsible for the field-induced density-wave state [5]. For
neutron-irradiated specimens as well as the pristine one,
the extrapolation of the reentrant field to zero temperature
probably gives a good approximation to the field at which
the relevant Landau subband crosses the Fermi level. Such
an extrapolated field shifts towards lower fields with neutron
irradiation dosage (or hole doping). This provides strong
evidence for the involvement of the electron (n = 0)
subband with the field-induced density-wave state, because
each electron (hole) Landau subband’s crossing field should
move to a lower (higher) field with hole doping. However,
it should be noted that the possibility of the participation of
the hole (n = −1) subband in the field-induced state is not
necessarily excluded.

The other thing to mention in terms of the results in
figure 7 will be the disappearance (or strong suppression) of the
β transition. Whilst the α transition appears even in the sample
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Figure 7. Magnetoresistance traces of neutron-irradiated specimens.
The onset transition (α) and the reentrant (α′) transition at 4.2 K are
indicated with arrows. Whilst the α and the α′ transitions are rather
robust against irradiation, the β transition disappears.

with the highest dose, the β transition does not appear in any
of the three neutron-irradiated samples. We have confirmed
that the β transition does not occur even in fields of up to
∼53 T. We suggest that this might provide evidence for the
β transition corresponding to the SDW transition. Since the
energy spectrum in magnetic field is one-dimensional owing to
Landau quantization, this charge neutrality condition may be
expressed as

kF(n=0,↑) + kF(n=0,↓) + kF(n=−1,↑) + kF(n=−1,↓) = 2π

c0
, (4)

where kF is the Fermi wavevector of each Landau subband
and c0 is the lattice constant along the c-axis. Therefore,
as illustrated in figure 6, the nesting vectors associated with
the SDW may be taken to be kF(n=0,↑) + kF(n=0,↓) = ( π

c0
−

kF(n=−1,↑)) + ( π
c0

− kF(n=−1,↓)) for both the electron subbands
and the hole subbands. In other words, the formation of the
SDW relies on the charge neutrality condition (equation (4)).
Therefore the suppression of the β transition could be due to
the violation of the charge neutrality condition, equation (4), in
the neutron-irradiated samples.

2.3. Other features of the field-induced density-wave phase

As partially mentioned above, there is other evidence for the
field-induced state being a density-wave state.

2.3.1. Field- and frequency-dependent transport. Both in
a CDW state and in an SDW state, field- and frequency-
dependent transport due to sliding motion of the depinned
density wave can be observed [23, 24].

Iye and Dresselhaus reported non-ohmicity in the
conduction parallel to the ab-plane, reminiscent of depinning
of a density wave, at magnetic fields between the α and
the β transitions; a typical threshold electric field was
∼100 mV cm−1 [21]. Later, Yaguchi et al observed non-
ohmicity in the conduction parallel to the c-axis, attributable

Figure 8. Phase diagram of pristine and neutron-irradiated graphite
in the H–T plane. The open symbols denote the onset (α) and
reentrant (α′) fields of neutron-irradiated graphite. The crosses
represent those for pristine graphite. The solid curve through the
crosses is a guide to the eye and provides an approximate phase
boundary for pristine graphite.

to depinning of a density wave, at magnetic fields above
the β transitions; a typical threshold electric field being
∼1 V cm−1 [20]. The discrepancy between these two studies
probably comes from the phases where non-ohmic conduction
was observed as being different.

Nakamura and co-workers investigated the resistance
anomaly associated with the onset transition by DC and
AC measurements and found that the resistance around the
transition is frequency dependent [25]. However, the onset
magnetic field of the density-wave state hardly depends on
measurement frequency. Subsequently, Takamasu and co-
workers made a more systematic study at frequencies of up
to 10 MHz, and found that the frequency dependence of the
real and imaginary parts of the conductivity are explained in
terms of a phenomenological model for a conventional one-
dimensional conductor [26].

2.3.2. Pair-breaking effect on the formation of a density
wave. As superconductivity is caused by electron–electron
pairing, both a CDW and an SDW are caused by electron–
hole pairing. Similar to magnetic impurities in an s-
wave superconductor in the Abrikosov–Gor’kov theory [27],
charged (ionized) impurities in a density-wave system act as
pair-breakers [28, 29]. The pair-breaking effect due to the
relevant impurity scattering reduces the critical temperature (or
increases the transition field for the present case in graphite)
and may be expressed by the equation

ln

(
Tc

Tc0

)
= �

(
1

2

)
− �

(
1

2
+ h̄

2πτkBTc

)
, (5)

where Tc0 is the critical temperature in the absence of the
pair-breaking effect and � is the digamma function. τ is
the scattering time associated with the pair-breaking process,
which may be treated as an adjustable parameter.

For the field-induced density-wave transition in graphite,
the suppression of the critical temperature due to an increase
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of scattering was reported in samples containing ionized
impurities acting as donors (typically n − p ≈ 1 ×
1016 cm−3) [30], and in neutron-irradiated samples (typically
p − n ≈ 1 × 1018 cm−3) [22] where lattice defects created
by the neutron irradiation act as acceptors. In either case, the
reduction of the critical temperature was explained in terms of
the pair-breaking effect using equation (5) with a reasonable
choice of a value for the adjustable parameter τ .

3. Summary

The carrier system in graphite undergoes magnetic-field-
induced electronic phase transitions. This phenomenon is
often discussed in terms of the formation of a 2kF-type density
wave along the c-axis, and is explained rather successfully,
whereas the real nature of the density-wave state still remains
somewhat unclear. We have mainly described our studies on
this subject using pulsed magnetic fields of over 50 T. We
obtained a definitive indication of a reentrant transition back
to the normal state owing to the Landau subbands crossing the
Fermi level (depopulation of the subband), and demonstrated
the importance of the self-energy effect in the vicinity of the
crossing field. We have also discussed a successive transition
in terms of the possible formation of a SDW.

Finally, we suggest that the occurrence of the field-
induced density-wave state relies on the following fortuitous
circumstances characteristic of graphite.

• Low carrier densities and small in-plane masses, which
lead to the electronic system being in its (quasi-) quantum
limit at moderate magnetic fields.

• Large effective masses along the c-axis, which lead to a
large enhancement of the density of states at the Fermi
level.

• Charge neutrality condition in a compensated semimetal,
which makes the electron-and hole-Landau subbands
translationally equivalent.

• Valley degeneracy (H–K–H and H′–K′–H′), which might
play an important role in the formation of a CDW (or
VDW) with the reduction of the Hartree energy loss.

These conditions make the carrier system in graphite somewhat
special and very intriguing in high magnetic fields.
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[13] Iye Y, Murayama C, Môri N, Yomo S, Nicholls J T and

Dresselhaus G 1990 Phys. Rev. B 41 3249
[14] Brooks J S 2008 Rep. Prog. Phys. 71 126501
[15] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[16] McClure J W 1960 Phys. Rev. 119 606
[17] Takada Y and Goto H 1998 J. Phys.: Condens. Matter

10 11315
[18] Sugihara K 1984 Phys. Rev. B 29 6722
[19] Takahashi K and Takada Y 1994 Physica B 201 384
[20] Yaguchi H, Takamasu T, Iye Y and Miura N 1999 J. Phys. Soc.

Japan 68 181
[21] Iye Y and Dresselhaus G 1985 Phys. Rev. Lett. 54 1182
[22] Yaguchi H, Iye Y, Takamasu T and Miura N 1999 J. Phys. Soc.

Japan 68 1300
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